Monday, December 3, 2012

WiMAX Technology



WiMAX Technology

click here to download



Introduction:
WiMAX would operate similar to WiFi but at higher speeds, over greater distances and for a greater number of users. WiMAX has the ability to provide service even in areas that are difficult for wired infrastructure to reach and the ability to overcome the physical limitations of traditional wired infrastructure.
WiMAX was formed in April 2001, in anticipation of the publication of the original 10-66 GHz IEEE 802.16 specifications. WiMAX is to 802.16 as the Wi-Fi Alliance is to 802.11.
WiMAX is:

  • Acronym for Worldwide Interoperability for Microwave Access.
  • Based on Wireless MAN technology.
  • A wireless technology optimized for the delivery of IP centric services over a wide area.
  • A scaleable wireless platform for constructing alternative and complementary broadband networks.
  • A certification that denotes interoperability of equipment built to the IEEE 802.16 or compatible standard. The IEEE 802.16 Working Group develops standards that address two types of usage models:
    • A fixed usage model (IEEE 802.16-2004).
Speed and Range:
WiMAX is expected to offer initially up to about 40 Mbps capacity per wireless channel for both fixed and portable applications, depending on the particular technical configuration chosen, enough to support hundreds of businesses with T-1 speed connectivity and thousands of residences with DSL speed connectivity. WiMAX can support voice and video as well as Internet data.
WiMax will be to provide wireless broadband access to buildings, either in competition to existing wired networks or alone in currently unserved rural or thinly populated areas. It can also be used to connect WLAN hotspots to the Internet. WiMAX is also intended to provide broadband connectivity to mobile devices. It would not be as fast as in these fixed applications, but expectations are for about 15 Mbps capacity in a 3 km cell coverage area.
With WiMAX users could really cut free from today.s Internet access arrangements and be able to go online at broadband speeds, almost wherever they like from within a MetroZone.
WiMAX could potentially be deployed in a variety of spectrum bands: 2.3GHz, 2.5GHz, 3.5GHz, and 5.8GHz
WiMAX is a wireless broadband solution that offers a rich set of features with a lot of flexibility in terms of deployment options and potential service offerings. Some of the more salient features that deserve highlighting are as follows:
Services:
WiMAX can provide two forms of wireless service:
  • Non-line-of-sight: service is a WiFi sort of service. Here a small antenna on your computer connects to the WiMAX tower. In this mode, WiMAX uses a lower frequency range -- 2 GHz to 11 GHz (similar to WiFi).
  • Line-of-sight: service, where a fixed dish antenna points straight at the WiMAX tower from a rooftop or pole. The line-of-sight connection is stronger and more stable, so it's able to send a lot of data with fewer errors. Line-of-sight transmissions use higher frequencies, with ranges reaching a possible 66 GHz.

OFDM-based physical layer:

The WiMAX physical layer (PHY) is based on orthogonal frequency division multiplexing, a scheme that offers good resistance to multipath, and allows WiMAX to operate in NLOS conditions.

Very high peak data rates:

WiMAX is capable of supporting very high peak data rates. In fact, the peak PHY data rate can be as high as 74Mbps when operating using a 20MHz wide spectrum.
More typically, using a 10MHz spectrum operating using TDD scheme with a 3:1 downlink-to-uplink ratio, the peak PHY data rate is about 25Mbps and 6.7Mbps for the downlink and the uplink, respectively.

Scalable bandwidth and data rate support:

WiMAX has a scalable physical-layer architecture that allows for the data rate to scale easily with available channel bandwidth.
For example, a WiMAX system may use 128, 512, or 1,048-bit FFTs (fast fourier transforms) based on whether the channel bandwidth is 1.25MHz, 5MHz, or 10MHz, respectively. This scaling may be done dynamically to support user roaming across different networks that may have different bandwidth allocations.

Adaptive modulation and coding (AMC):

WiMAX supports a number of modulation and forward error correction (FEC) coding schemes and allows the scheme to be changed on a per user and per frame basis, based on channel conditions.
AMC is an effective mechanism to maximize throughput in a time-varying channel.

Link-layer retransmissions:

WiMAX supports automatic retransmission requests (ARQ) at the link layer for connections that require enhanced reliability. ARQ-enabled connections require each transmitted packet to be acknowledged by the receiver; unacknowledged packets are assumed to be lost and are retransmitted.

Support for TDD and FDD:

IEEE 802.16-2004 and IEEE 802.16e-2005 supports both time division duplexing and frequency division duplexing, as well as a half-duplex FDD, which allows for a low-cost system implementation.

WiMAX uses OFDM:

Mobile WiMAX uses Orthogonal frequency division multiple access (OFDM) as a multiple-access technique, whereby different users can be allocated different subsets of the OFDM tones.

Flexible and dynamic per user resource allocation:

Both uplink and downlink resource allocation are controlled by a scheduler in the base station. Capacity is shared among multiple users on a demand basis, using a burst TDM scheme.

Support for advanced antenna techniques:

The WiMAX solution has a number of hooks built into the physical-layer design, which allows for the use of multiple-antenna techniques, such as beamforming, space-time coding, and spatial multiplexing.

Quality-of-service support:

The WiMAX MAC layer has a connection-oriented architecture that is designed to support a variety of applications, including voice and multimedia services.
WiMAX system offers support for constant bit rate, variable bit rate, real-time, and non-real-time traffic flows, in addition to best-effort data traffic.
WiMAX MAC is designed to support a large number of users, with multiple connections per terminal, each with its own QoS requirement.

Robust security:

WiMAX supports strong encryption, using Advanced Encryption Standard (AES), and has a robust privacy and key-management protocol.
The system also offers a very flexible authentication architecture based on Extensible Authentication Protocol (EAP), which allows for a variety of user credentials, including username/password, digital certificates, and smart cards.

Support for mobility:

The mobile WiMAX variant of the system has mechanisms to support secure seamless handovers for delay-tolerant full-mobility applications, such as VoIP.

IP-based architecture:

The WiMAX Forum has defined a reference network architecture that is based on an all-IP platform. All end-to-end services are delivered over an IP architecture relying on IP-based protocols for end-to-end transport, QoS, session management, security, and mobility. A WiMAX system consists of two major parts:
  • A WiMAX base station.
  • A WiMAX receiver.

WiMAX Base Station:

A WiMAX base station consists of indoor electronics and a WiMAX tower similar in concept to a cell-phone tower. A WiMAX base station can provide coverage to a very large area up to a radius of 6 miles. Any wireless device within the coverage area would be able to access the Internet.
The WiMAX base stations would use the MAC layer defined in the standard . a common interface that makes the networks interoperable and would allocate uplink and downlink bandwidth to subscribers according to their needs, on an essentially real-time basis.
Each base station provides wireless coverage over an area called a cell. Theoretically, the maximum radius of a cell is 50 km or 30 miles however, practical considerations limit it to about 10 km or 6 miles.

WiMAX Receiver:

A WiMAX receiver may have a separate antenna or could be a stand-alone box or a PCMCIA card sitting in your laptop or computer or any other device. This is also referred as customer premise equipment (CPE).
WiMAX base station is similar to accessing a wireless access point in a WiFi network, but the coverage is greater.

Backhaul:

A WiMAX tower station can connect directly to the Internet using a high-bandwidth, wired connection (for example, a T3 line). It can also connect to another WiMAX tower using a line-of-sight, microwave link.
Backhaul refers both to the connection from the access point back to the base station and to the connection from the base station to the core network.
It is possible to connect several base stations to one another using high-speed backhaul microwave links. This would also allow for roaming by a WiMAX subscriber from one base station coverage area to another, similar to the roaming enabled by cell phones.
The network reference model envisions a unified network architecture for supporting fixed, nomadic, and mobile deployments and is based on an IP service model. Below is simplified illustration of an IP-based WiMAX network architecture. The overall network may be logically divided into three parts:
  1. Mobile Stations (MS) used by the end user to access the network.
  2. The access service network (ASN), which comprises one or more base stations and one or more ASN gateways that form the radio access network at the edge.
  3. Connectivity service network (CSN), which provides IP connectivity and all the IP core network functions.
Network Reference Model:
The network reference model developed by the WiMAX Forum NWG defines a number of functional entities and interfaces between those entities. Fig below shows some of the more important functional entities.
  • Base station (BS): The BS is responsible for providing the air interface to the MS. Additional functions that may be part of the BS are micromobility management functions, such as handoff triggering and tunnel establishment, radio resource management, QoS policy enforcement, traffic classification, DHCP (Dynamic Host Control Protocol) proxy, key management, session management, and multicast group management.
  • Access service network gateway (ASN-GW): The ASN gateway typically acts as a layer 2 traffic aggregation point within an ASN. Additional functions that may be part of the ASN gateway include intra-ASN location management and paging, radio resource management and admission control, caching of subscriber profiles and encryption keys, AAA client functionality, establishment and management of mobility tunnel with base stations, QoS and policy enforcement, foreign agent functionality for mobile IP, and routing to the selected CSN.
  • Connectivity service network (CSN): The CSN provides connectivity to the Internet, ASP, other public networks, and corporate networks. The CSN is owned by the NSP and includes AAA servers that support authentication for the devices, users, and specific services. The CSN also provides per user policy management of QoS and security. The CSN is also responsible for IP address management, support for roaming between different NSPs, location management between ASNs, and mobility and roaming between ASNs.

The WiMAX architecture framework allows for the flexible decomposition and/or combination of functional entities when building the physical entities. For example, the ASN may be decomposed into base station transceivers (BST), base station controllers (BSC), and an ASNGW analogous to the GSM model of BTS, BSC, and Serving GPRS Support NodeWiMAX is a technology based on the IEEE 802.16 specifications to enable the delivery of last-mile wireless broadband access as an alternative to cable and DSL. The design of WiMAX network is based on the following major principles:
  • Spectrum . able to be deployed in both licensed and unlicensed spectra.
  • Topology . supports different Radio Access Network (RAN) topologies.
  • Interworking . independent RAN architecture to enable seamless integration and interworking with WiFi, 3GPP and 3GPP2 networks and existing IP operator core network.
  • IP connectivity . supports a mix of IPv4 and IPv6 network interconnects in clients and application servers.
  • Mobility management . possibility to extend the fixed access to mobility and broadband multimedia services delivery.
(SGSN).
The WiMAX physical layer is based on orthogonal frequency division multiplexing. OFDM is the transmission scheme of choice to enable high-speed data, video, and multimedia communications and is used by a variety of commercial broadband systems, including DSL, Wi-Fi, Digital Video Broadcast-Handheld (DVB-H), and MediaFLO, besides WiMAX.
OFDM is an elegant and efficient scheme for high data rate transmission in a non-line-of-sight or multipath radio environment.

Adaptive Modulation and Coding in WiMAX:

WiMAX supports a variety of modulation and coding schemes and allows for the scheme to change on a burst-by-burst basis per link, depending on channel conditions. Using the channelquality feedback indicator, the mobile can provide the base station with feedback on the downlink channel quality. For the uplink, the base station can estimate the channel quality, based on the received signal quality.
Following is a list of the various modulation and coding schemes supported by WiMAX.
 
Downlink
Uplink

ModulationBPSK, QPSK, 16 QAM, 64 QAM; BPSK optional for OFDMA-PHYBPSK, QPSK, 16 QAM; 64 QAM optional

Coding Mandatory: convolutional codes at rate 1/2, 2/3, 3/4, 5/6
Optional: convolutional turbo codes at rate 1/2, 2/3, 3/4, 5/6; repetition codes at rate 1/2, 1/3, 1/6, LDPC, RS-Codes for OFDM-PHY
Mandatory: convolutional codes at rate 1/2, 2/3, 3/4, 5/6 Optional: convolutional turbo codes at rate 1/2, 2/3, 3/4, 5/6; repetition codes at rate 1/2, 1/3, 1/6, LDPC

PHY-Layer Data Rates:

Because the physical layer of WiMAX is quite flexible, data rate performance varies based on the operating parameters. Parameters that have a significant impact on the physical-layer data rate are channel bandwidth and the modulation and coding scheme used. Other parameters, such as number of subchannels, OFDM guard time, and oversampling rate, also have an impact.
Following is the PHY-layer data rate at various channel bandwidths, as well as modulation and coding schemes.
OFDM belongs to a family of transmission schemes called multicarrier modulation, which is based on the idea of dividing a given high-bit-rate data stream into several parallel lower bit-rate streams and modulating each stream on separate carriers.often called subcarriers, or tones.
Multicarrier modulation schemes eliminate or minimize intersymbol interference (ISI) by making the symbol time large enough so that the channel-induced delays.delay spread being a good measure of this in wireless channels . are an insignificant (typically, < 10 percent) fraction of the symbol duration.
Therefore, in high-data-rate systems in which the symbol duration is small, being inversely proportional to the data rate, splitting the data stream into many parallel streams increases the symbol duration of each stream such that the delay spread is only a small fraction of the symbol duration.
OFDM is a spectrally efficient version of multicarrier modulation, where the subcarriers are selected such that they are all orthogonal to one another over the symbol duration, thereby avoiding the need to have nonoverlapping subcarrier channels to eliminate intercarrier interference.
In order to completely eliminate ISI, guard intervals are used between OFDM symbols. By making the guard interval larger than the expected multipath delay spread, ISI can be completely eliminated. Adding a guard interval, however, implies power wastage and a decrease in bandwidth effiThe IEEE 802.16 MAC was designed for point-to-multipoint broadband wireless access applications. The primary task of the WiMAX MAC layer is to provide an interface between the higher transport layers and the physical layer.
MAC layer:
The MAC layer takes packets from the upper layer.these packets are called MAC service data units (MSDUs).and organizes them into MAC protocol data units (MPDUs) for transmission over the air. For received transmissions, the MAC layer does the reverse.
The IEEE 802.16-2004 and IEEE 802.16e-2005 MAC design includes a convergence sublayer that can interface with a variety of higher-layer protocols, such as ATM TDM Voice, Ethernet, IP, and any unknown future protocol.
The 802.16 MAC is designed for point-to-multipoint (PMP) applications and is based on collision sense multiple access with collision avoidance (CSMA/CA).
The MAC incorporates several features suitable for a broad range of applications at different mobility rates, such as the following:
  • Privacy key management (PKM) for MAC layer security. PKM version 2 incorporates support for extensible authentication protocol (EAP).
  • Broadcast and multicast support.
  • Manageability primitives.
  • High-speed handover and mobility management primitives.
  • Three power management levels, normal operation, sleep and idle.
  • Header suppression, packing and fragmentation for efficient use of spectrum.
  • Five service classes, unsolicited grant service (UGS), real-time polling service (rtPS), non-real-time polling service (nrtPS), best effort (BE) and Extended real-time variable rate (ERT-VR) service.
These features combined with the inherent benefits of scalable OFDMA make 802.16 suitable for high-speed data and bursty or isochronous IP multimedia applications.
Support for QoS is a fundamental part of the WiMAX MAC-layer design. WiMAX borrows some of the basic ideas behind its QoS design from the DOCSIS cable modem standard.
Strong QoS control is achieved by using a connection-oriented MAC architecture, where all downlink and uplink connections are controlled by the serving BS.
WiMAX also defines a concept of a service flow. A service flow is a unidirectional flow of packets with a particular set of QoS parameters and is identified by a service flow identifier (SFID).
Summary:
  • WiMAX is based on a very flexible and robust air interface defined by the IEEE 802.16 group.
  • WiMAX is similar to the wireless standard known as Wi-Fi, but on a much larger scale and at faster speeds.
  • The WiMAX physical layer is based on OFDM, which is an elegant and effective technique for overcoming multipath distortion.
  • The physical layer supports several advanced techniques for increasing the reliability of the link layer. These techniques include powerful error correction coding, including turbo coding and LDPC, hybrid-ARQ, and antenna arrays.
  • WiMAX supports a number of advanced signal-processing techniques to improve overall system capacity. These techniques include adaptive modulation and coding, spatial multiplexing, and multiuser diversity.
  • WiMAX has a very flexible MAC layer that can accommodate a variety of traffic types, including voice, video, and multimedia, and provide strong QoS.
  • Robust security functions, such as strong encryption and mutual authentication, are built into the WiMAX standard.
  • WiMAX defines a flexible all-IP-based network architecture that allows for the exploitation of all the benefits of IP.
  • WiMAX offers very high spectral efficiency, particularly when using higher-order MIMO solutions.
WiMAX Forum™ is an industry-led, non-profit corporation formed to promote and certify compatibility and interoperability of broadband wireless products.
WiMAX Forum Certified™ products will be based upon a single global standard IEEE 802.16 enabling complete interoperability worldwide
Mobility Support:
WiMAX envisions four mobility-related usage scenarios :
  • Nomadic: The user is allowed to take a fixed subscriber station and reconnect from a different point of attachment.
  • Portable: Nomadic access is provided to a portable device, such as a PC card, with expectation of a best-effort handover.
  • Simple mobility: The subscriber may move at speeds up to 60 kmph with brief interruptions (less than 1 sec) during handoff.
  • Full mobility: Up to 120 kmph mobility and seamless handoff (less than 50 ms latency and < 1% packet loss) is supported.



No comments:

Post a Comment

Slider

Image Slider By engineerportal.blogspot.in The slide is a linking image  Welcome to Engineer Portal... #htmlcaption

Tamil Short Film Laptaap

Tamil Short Film Laptaap
Laptapp

Labels

About Blogging (1) Advance Data Structure (2) ADVANCED COMPUTER ARCHITECTURE (4) Advanced Database (4) ADVANCED DATABASE TECHNOLOGY (4) ADVANCED JAVA PROGRAMMING (1) ADVANCED OPERATING SYSTEMS (3) ADVANCED OPERATING SYSTEMS LAB (2) Agriculture and Technology (1) Analag and Digital Communication (1) Android (1) Applet (1) ARTIFICIAL INTELLIGENCE (3) aspiration 2020 (3) assignment cse (12) AT (1) AT - key (1) Attacker World (6) Basic Electrical Engineering (1) C (1) C Aptitude (20) C Program (87) C# AND .NET FRAMEWORK (11) C++ (1) Calculator (1) Chemistry (1) Cloud Computing Lab (1) Compiler Design (8) Computer Graphics Lab (31) COMPUTER GRAPHICS LABORATORY (1) COMPUTER GRAPHICS Theory (1) COMPUTER NETWORKS (3) computer organisation and architecture (1) Course Plan (2) Cricket (1) cryptography and network security (3) CS 810 (2) cse syllabus (29) Cyberoam (1) Data Mining Techniques (5) Data structures (3) DATA WAREHOUSING AND DATA MINING (4) DATABASE MANAGEMENT SYSTEMS (8) DBMS Lab (11) Design and Analysis Algorithm CS 41 (1) Design and Management of Computer Networks (2) Development in Transportation (1) Digital Principles and System Design (1) Digital Signal Processing (15) DISCRETE MATHEMATICS (1) dos box (1) Download (1) ebooks (11) electronic circuits and electron devices (1) Embedded Software Development (4) Embedded systems lab (4) Embedded systems theory (1) Engineer Portal (1) ENGINEERING ECONOMICS AND FINANCIAL ACCOUNTING (5) ENGINEERING PHYSICS (1) english lab (7) Entertainment (1) Facebook (2) fact (31) FUNDAMENTALS OF COMPUTING AND PROGRAMMING (3) Gate (3) General (3) gitlab (1) Global warming (1) GRAPH THEORY (1) Grid Computing (11) hacking (4) HIGH SPEED NETWORKS (1) Horizon (1) III year (1) INFORMATION SECURITY (1) Installation (1) INTELLECTUAL PROPERTY RIGHTS (IPR) (1) Internal Test (13) internet programming lab (20) IPL (1) Java (38) java lab (1) Java Programs (28) jdbc (1) jsp (1) KNOWLEDGE MANAGEMENT (1) lab syllabus (4) MATHEMATICS (3) Mechanical Engineering (1) Microprocessor and Microcontroller (1) Microprocessor and Microcontroller lab (11) migration (1) Mini Projects (1) MOBILE AND PERVASIVE COMPUTING (15) MOBILE COMPUTING (1) Multicore Architecute (1) MULTICORE PROGRAMMING (2) Multiprocessor Programming (2) NANOTECHNOLOGY (1) NATURAL LANGUAGE PROCESSING (1) NETWORK PROGRAMMING AND MANAGEMENT (1) NETWORKPROGNMGMNT (1) networks lab (16) News (14) Nova (1) NUMERICAL METHODS (2) Object Oriented Programming (1) ooad lab (6) ooad theory (9) OPEN SOURCE LAB (22) openGL (10) Openstack (1) Operating System CS45 (2) operating systems lab (20) other (4) parallel computing (1) parallel processing (1) PARALLEL PROGRAMMING (1) Parallel Programming Paradigms (4) Perl (1) Placement (3) Placement - Interview Questions (64) PRINCIPLES OF COMMUNICATION (1) PROBABILITY AND QUEUING THEORY (3) PROGRAMMING PARADIGMS (1) Python (3) Question Bank (1) question of the day (8) Question Paper (13) Question Paper and Answer Key (3) Railway Airport and Harbor (1) REAL TIME SYSTEMS (1) RESOURCE MANAGEMENT TECHNIQUES (1) results (3) semester 4 (5) semester 5 (1) Semester 6 (5) SERVICE ORIENTED ARCHITECTURE (1) Skill Test (1) software (1) Software Engineering (4) SOFTWARE TESTING (1) Structural Analysis (1) syllabus (34) SYSTEM SOFTWARE (1) system software lab (2) SYSTEMS MODELING AND SIMULATION (1) Tansat (2) Tansat 2011 (1) Tansat 2013 (1) TCP/IP DESIGN AND IMPLEMENTATION (1) TECHNICAL ENGLISH (7) Technology and National Security (1) Theory of Computation (3) Thought for the Day (1) Timetable (4) tips (4) Topic Notes (7) tot (1) TOTAL QUALITY MANAGEMENT (4) tutorial (8) Ubuntu LTS 12.04 (1) Unit Wise Notes (1) University Question Paper (1) UNIX INTERNALS (1) UNIX Lab (21) USER INTERFACE DESIGN (3) VIDEO TUTORIALS (1) Virtual Instrumentation Lab (1) Visual Programming (2) Web Technology (11) WIRELESS NETWORKS (1)

LinkWithin