Tuesday, October 2, 2012

Data Warehousing and Data Mining Course Plan CS701

 Data Warehousing and Data Mining  Course Plan


Subject Code   :  CS701                                                          Semester    : VII/IV CSE A

Subject              :  Data Warehousing and Data Mining                   

TEXT BOOKS

 T1. Alex Berson and Stephen J. Smith, " Data Warehousing, Data Mining & OLAP", Tata McGraw – Hill Edition, Tenth Reprint 2007.

T2. Jiawei Han and Micheline Kamber,  "Data Mining Concepts and Techniques", Second Edition, Elsevier, 2007.

S. No

Topic

Book with

Page no.

No of Hrs

Cumulative hrs

Teaching Aids

UNIT I  DATA WAREHOUSING (10)

  1.  

Introduction

Notes

1

1

 

  1. 1

Data warehousing Components

T1 (115-128)

1

2

NPTEL

  1.  

Building a Data warehouse

T1 (129 -150)

2

4

 

  1. 2

Mapping the Data Warehouse to a Multiprocessor Architecture

T1 (151-168)

1

5

OHP

  1. 3

DBMS Schemas for Decision Support

T1 (169 – 186)

1

6

 

  1. 4

Data Extraction, Cleanup, and Transformation Tools

T1 (187 -204)

2

8

 

  1.  

Metadata

T1 (205-220)

2

10

PPT

UNIT II  BUSINESS ANALYSIS      (8)

  1. 5

Reporting and Query tools and Applications

T1 223

1

11

 

  1.  

Tool Categories

T1 (223-226)

  1. 7

The Need for Applications

T1 (226-227)

1

12

 

  1.  

Cognos Impromptu

T1 (228-232)

1

13

 

  1.  

Online Analytical Processing (OLAP)

T1 247

1

 

14

 

NPTEL

  1.  

OLAP  Need

T1 247

  1.  

Multidimensional Data Model

T1 (248-249)

1

15

PPT

  1.  

OLAP Guidelines

T1 (250-251)

1

16

 

  1.  

Multidimensional versus Multi relational OLAP

T1 251

1

 

17

 

OHP

  1.  

Categories of Tools

T1 (251-255)

  1.  

OLAP Tools and the Internet

T1 (262-264)

1

18

 

UNIT III  DATA MINING     (8)

  1. 9

Introduction

T2 (1-15)

1

19

NPTEL

  1. 10

Data – Types of Data

  1.  

Data Mining Functionalities

T2 (21-27)

1

20

 

  1.  

Interestingness of Patterns

T2 (27-28)

  1.  

Classification of Data Mining Systems

T2 (29-30)

1

21

PPT

  1.  

Data Mining Task Primitives

T2 (31-33)

1

22

 

  1.  

Integration of a Data Mining System with a Data Warehouse

T2(34-35)

1

23

 

  1.  

Issues

T2(36-38)

1

24

 

  1.  

Data Preprocessing

T2(47-96)

2

26

OHP

UNIT IV ASSOCIATION RULE MINING AND CLASSIFICATION (11)

  1. 14

Mining Frequent Patterns, Associations and Correlations

T2(227)

1

27

OHP

  1.  

Mining Methods

T2(234-249)

  1.  

Mining Various Kinds of Association Rules

T2(250-258)

1

28

NPTEL

  1.  

Correlation Analysis

T2(259-264)

1

29

 

  1. 15

Constraint Based Association Mining

T2(265-271)

1

30

 

  1.  

Classification and prediction - Basic Concepts

T2(285)

1

31

 

  1.  

Decision Tree Induction

T2(291-301)

1

32

OHP

  1.  

Bayesian Classification

T2(310-317)

1

33

PPT

  1.  

Rule Based Classification

T2(318-326)

1

34

 

  1.  

Classification by Back propagation

T2(327-336)

1

35

 

  1.  

Support Vector Machines

T2(337-343)

  1.  

Associative Classification

T2(344-346)

1

36

 

  1.  

Lazy Learners

T2(347-350)

  1.  

Other Classification Methods

T2 (351-353)

  1.  

Prediction

T2 (354-358)

1

37

 

UNIT V  CLUSTERING AND APPLICATIONS AND TRENDS IN DATA MINING (8)

  1. 16

Cluster Analysis

T2 (383 - 385)

1

38

 

  1.  

Types of Data

T2 (386 - 397)

  1.  

Categorization of Major Clustering Methods

T2 (398 - 400)

1

39

 

  1.  

K means

T2 (401)

  1.  

Partitioning Methods

T2 (401 - 407)

  1.  

Hierarchical Methods

T2 (408 - 417)

1

40

PPT

  1. 17

Density-Based Methods

T2 (418 - 423)

  1.  

Grid Based Methods

T2 (424 - 428)

1

41

 

  1.  

Model-Based Clustering Methods

T2 (429 - 433)

1

42

 

  1.  

Clustering High Dimensional Data

T2 (434 - 443)

  1.  

Constraint – Based Cluster Analysis

T2 (444 - 450)

1

43

 

  1.  

Outlier Analysis

T2 (451 - 459)

1

44

 

  1.  

Data Mining Applications and Overview

Overall Review

T2 (649 - 659)

1

45

OHP

Total = 45 Hours

Further Reading and References:

 

Related Websites

S. No

             Website Name

1

http://www.thedacs.com

2

http://databases.about.com

3

http://www.dataminingblog.com

4

http://www.1keydata.com

 

Advanced Topics

S. No

Advanced Topics

Related Topic in Syllabus

1

Machine Learning

UNIT – IV (Classification and Prediction)

2

Web Data Mining

UNIT – V (Data Mining Applications)

 

Related Journals

S. No

Journal Name

Website Name

1

IEEE Transactions on Knowledge and Data Engineering

http://www.computer.org/tkde

2

Data Mining and Knowledge Discovery: An International Journal

http://www.springerlink.com

3

IEEE Transactions on Pattern Analysis and Machine Intelligence

http://computer.org/tpami

 

Related NPTEL Course Materials

S. No

Course Name

Co-Ordinator & Institute

Website Name

1

Data warehousing Components -Video

Learningdom online Training

http://www.learningdom.com

2

Introduction to Data Mining- Video

Dr. S. Srinath, IIT Bangalore

http://www.nptel.iitm.ac.in

3

Mining Various Kinds of Association Rules Video

Dr. S. Srinath, IIT Bangalore

http://www.nptel.iitm.ac.in

 

 


--
Hackerx Sasi
Don't ever give up.
Even when it seems impossible,
Something will always
pull you through.
The hardest times get even
worse when you lose hope.
As long as you believe you can do it, You can.

But When you give up,
You lose !
I DONT GIVE UP.....!!!


In three words I can sum up everything I've learned about life - it goes on......
with regards
prem sasi kumar arivukalanjiam

1 comment: