area under a curve in C Program Code :: Answer :: Aspiration 2020 :: Question number 3 :: 2012
Solution :
// hackerx sasi kamaraj college of engineering and technology 2910007 C Program
#include <stdio.h>
float start_point, /* GLOBAL VARIABLES */
end_point,
total_area;
int numtraps;
main( )
{
void input(void);
float find_area(float a,float b,int n); /* prototype */
print("AREA UNDER A CURVE");#include <stdio.h>
float start_point, /* GLOBAL VARIABLES */
end_point,
total_area;
int numtraps;
main( )
{
void input(void);
float find_area(float a,float b,int n); /* prototype */
input( );
total_area = find_area(start_point, end_point, numtraps);
printf("TOTAL AREA = %f", total_area);
}
void input(void)
{
printf("\n Enter lower limit:");
scanf("%f", &start_point);
printf("Enter upper limit:");
scanf("%f", &end_point);
printf("Enter number of trapezoids:");
scanf("%d", &numtraps);
}
float find_area(float a, float b, int n)
{
floatbase, lower, h1, h2; /* LOCAL VARIABLES */float function_x(float x); /* prototype */float trap_area(float h1,float h2,floatbase);/*prototype*/base = (b-1)/n;
lower = a;
for(lower =a; lower <= b-base; lower = lower + base)
{
h1 = function_x(lower);
h1 = function_x(lower + base);
total_area += trap_area(h1, h2, base);
}
return(total_area);
float trap_area(float height_1,float height_2,floatbase)
{
float area; /* LOCAL VARIABLE */
area = 0.5 * (height_1 + height_2) * base;
return(area);
}
float function_x(float x)
{
/* F(X) = X * X + 1 */return(x*x + 1);
}
Output
AREA UNDER A CURVE
Enter lower limit: 0
Enter upper limit: 3
Enter number of trapezoids: 30
TOTAL AREA = 12.005000
AREA UNDER A CURVE
Enter lower limit: 0
Enter upper limit: 3
Enter number of trapezoids: 100
TOTAL AREA = 12.000438
Enter lower limit: 0
Enter upper limit: 3
Enter number of trapezoids: 100
TOTAL AREA = 12.000438
Solution in java ::
// hackerx sasi kamaraj college of engineering and technology 2910007 java Program
//The answer to be precise... although the type was a double, it rounds off the answer. Any help would be //appreciated...
//java code: 1. :: try this or the another one below this one
//Program code ::
public class Reimann
{
private static double integral(String s, double[] descriptors, double lb, double ub)
{
double area = 0; // Area of the rectangle
double sumOfArea = 0; // Sum of the area of the rectangles
double oldSumOfArea = 0;
double width = ub - lb;
boolean firstPass = true;
while ( (Math.abs((oldSumOfArea - sumOfArea) / sumOfArea) > .0001) || firstPass )
{
System.out.println((Math.abs((oldSumOfArea - sumOfArea) / sumOfArea) > .0001) || firstPass);
if (s.equals("poly"))
{
for (int i = 1; i <= ((ub - lb) / width); i++) // represents # of rectangles
{
for (int j = 0; j < descriptors.length; j++) // Goes through all the coefficients
{
area = width * descriptors[j] * Math.pow ( (double)( (i * width + lb + (i -1.0) * width + lb) / 2.0 ), j);
/*Above code computes area of each rectangle */
sumOfArea += area;
}
}
}
width = width / 2;
firstPass = false;
oldSumOfArea = sumOfArea;
}
return sumOfArea;
}
/*private static void runMyTests()
{
assert ( integral() <= 48.00001 ) && ( integral() >= 47.99999 );
}*/
public static void main (String [] args)
{
double lb = Double.parseDouble(args[args.length -2]);
double ub = Double.parseDouble(args[args.length -1]);
double[] coefficients = new double[args.length - 3];
if (args[0].equals("poly"))
{
for (int i = 1; i < args.length - 2; i++)
{
coefficients[i-1] = Double.parseDouble(args[i]);
}
System.out.println(integral("poly", coefficients, lb, ub));
}
}
}
Java Program 2 ::
public class Riemann
{
private static double integral(String s, double[] descriptors, double lb, double ub)
{
double area = 0; // Area of the rectangle
double sumOfArea = 0; // Sum of the area of the rectangles
double oldSumOfArea = 0;
double width = ub - lb;
boolean firstPass = true;
while ( (Math.abs((oldSumOfArea - sumOfArea) / sumOfArea) > .0001) || firstPass )
{
System.out.println((Math.abs((oldSumOfArea - sumOfArea) / sumOfArea) > .0001) || firstPass);
if (s.equals("poly")) // Statement for polynomial
{
for (int i = 1; i <= ((ub - lb) / width); i++) // represents # of rectangles
{
for (int j = 0; j < descriptors.length; j++) // Goes through all the coefficients
{
area = width * descriptors[j] * Math.pow ( (double)( (i * width + lb + (i -1.0) * width + lb) / 2.0 ), j);
/*Above code computes area of each rectangle */
sumOfArea += area;
}
}
}
else if (s.equals("sin")) // Statement for sin
{
for (int i = 1; i <= ((ub - lb) / width); i++) // represents # of rectangles
{
for (int j = 0; j < descriptors.length; j++) // Goes through all the coefficients
{
area = width * descriptors[j] * Math.sin(Math.toRadians(( (double)( (i * width + lb + (i -1.0) * width + lb) / 2.0 ))));
/*Above code computes area of each rectangle */
sumOfArea += area;
}
}
}
else if (s.equals("cos")) // Statement for cos
{
for (int i = 1; i <= ((ub - lb) / width); i++) // represents # of rectangles
{
for (int j = 0; j < descriptors.length; j++) // Goes through all the coefficients
{
area = width * descriptors[j] * Math.cos(Math.toRadians(( (double)( (i * width + lb + (i -1.0) * width + lb) / 2.0 ))));
/*Above code computes area of each rectangle */
sumOfArea += area;
}
}
}
width = width / 2;
firstPass = false;
oldSumOfArea = sumOfArea;
}
return sumOfArea;
}
/*private static void runMyTests()
{
assert ( integral() <= 48.00001 ) && ( integral() >= 47.99999 );
}*/
public static void main (String [] args)
{
double lb = Double.parseDouble(args[args.length -2]);
double ub = Double.parseDouble(args[args.length -1]);
double[] coefficients = new double[args.length - 3];
if (args[0].equals("poly"))
{
for (int i = 1; i < args.length - 2; i++)
{
coefficients[i-1] = Double.parseDouble(args[i]);
}
System.out.println(integral("poly", coefficients, lb, ub));
}
else if (args[0].equals("sin"))
{
for (int i = 1; i < args.length - 2; i++)
{
coefficients[i-1] = Double.parseDouble(args[i]);
}
System.out.println(integral("sin", coefficients, lb, ub));
}
else if (args[0].equals("cos"))
{
for (int i = 1; i < args.length - 2; i++)
{
coefficients[i-1] = Double.parseDouble(args[i]);
}
System.out.println(integral("cos", coefficients, lb, ub));
}
}
}
Question ::
Area Under Curve
Write a program to find the area under the curve y = f(x) between x = a and x = b, integrate y = f(x) between the limits of a and b.
The area under a curve between two points can be found by doing a definite integral between the two points.
The area under a curve between two points can be found by doing a definite integral between the two points.
Instructions to work with Open PBT Client:
- Specify the work directory path in the 'Work Directory Path' field. The path should correspond to your solution project directory.
- Download the support files by clicking the Get Dev Files.
- You will find the following three folders:
- bin
- src
- lib
- Code the solution in . java file inside the src folder
- All required files will be downloaded to your work directory. Creating additional files is strongly discouraged.
The Prototype of the Function is :
public double getAreaUnderCurve(Term[] equation, int limit1, int limit2)- Where equation represents number of Term in a equation with x_pow and coeff of X
- Where limit1 and limit2 are the 2 given points to find the area.
- The function getAreaUnderCurve() return the area of type double corrected to 4 decimal places.(eg : 5.2704. )
Example 1
Input :
Term[] equation = x + 3(x^2); int limit1 = 4; int limit2 = 8;
where, Term[] equation = new Term[2]
func[0] = new Term(1,1)
func[1] = new Term(2,3)
Term[] equation = x + 3(x^2); int limit1 = 4; int limit2 = 8;
where, Term[] equation = new Term[2]
func[0] = new Term(1,1)
func[1] = new Term(2,3)
Output :
The function getAreaUnderCurve() returns 472.0.
Explanation :The function getAreaUnderCurve() returns 472.0.
Example 2
Input :
Term[] equation = x; int limit1 = 1; int limit2 = 1;
Term[] equation = x; int limit1 = 1; int limit2 = 1;
Output :
The function getAreaUnderCurve() returns 0.0
The function getAreaUnderCurve() returns 0.0
Example 3
Input :
Term[] equation = x; int limit1 = 2; int limit2 = 1;
Term[] equation = x; int limit1 = 2; int limit2 = 1;
Output :
The function getAreaUnderCurve() returns 1.5
The function getAreaUnderCurve() returns 1.5
For Java solutions
Package Name | - | test.areaundercurve |
File Name | - | AreaUnderCurve.java |
Class Name | - | AreaUnderCurve |
Function Name | - | public double getAreaUnderCurve(Term[] equation, int limit1, int limit2) |
General Instructions
The package names, class names, method signatures are to be used as mentioned in the problem statement. Do not use your own names or change the method signatures and fields. You can add any number of additional methods.
| ||
The function(s) defined above would be the only functions that would be tested. If you add a main() function for your own testing, that would not be tested.
| ||
Command line options for the main() function are not supported currently.
|
--
Don't ever give up.
Even when it seems impossible,
Something will always
pull you through.
The hardest times get even
worse when you lose hope.
As long as you believe you can do it, You can.
But When you give up,
You lose !
I DONT GIVE UP.....!!!
In three words I can sum up everything I've learned about life - it goes on......
with regards
prem sasi kumar arivukalanjiam
No comments:
Post a Comment